【新智元导读】刚刚,信息检索领域的国际顶会SIGIR 2024,公布了最终获奖结果。在所有获奖名单中,来自清华计算机系的团队们斩获了两大奖项——时间检验奖、最佳论文奖,实至名归!
今年,SIGIR组委会暂未汇总公布所有的获奖名单,不过已经有机构/网友纷纷晒出了自己的成绩单。
2014年发表的论文斩获SIGIR 2024唯一「时间检验奖」,另一篇论文获得「最佳论文奖」。
另外,CS系助理教授艾清遥还获得了「青年学者奖」,这也是中国大陆研究学者首次拿下该奖项。
除清华艾清遥之外,还有微软研究院Bhaskar Mitra、拉德堡德大学Harrle Oosterhuis,以及中科大Xiang Wang教授(王翔)成为青年学者奖的获奖者!
今年,是国际计算机学会信息检索大会(SIGIR)第47届会议,于7月14日-18日在美国华盛顿特区正式召开M6。
这次会议共收到1148篇投稿,其中有791篇是有效投稿,仅有159篇长文被录用,录用率为20.1%。相较于CVPR、ICML这样的顶会,投稿数少了一大截。
根据艾清遥对接受论文的统计,从各研究机构教师的论文数量来看,今年亚洲的贡献似乎最大。
这篇获奖论文,由共同一作方言、詹靖涛,指导老师艾清遥助理教授、刘奕群教授完成的论文。
Scaling Law早已成为大模型公认的定律,即LLM智能水平与参数规模呈正相关性,成为大模型区别于传统AI模型的重要特征。
他们设计了新型检索性能评价范式,验证了Scaling Law在稠密信息检索中的适用性。
这篇发表在2014年的论文,由时任计算机系张永锋博士、赖国堃等学生,在张敏教授、刘奕群教授、马少平教授指导下完成。
清华官微称,自2014年以来,这项「可解释性推荐」研究自发表以来,在互联网推荐系统的设计与实现中一直发挥着重要的引领作用。
根据Google Scholar的统计,截至目前,这篇论文被引数近千次。
研究中,作者介绍了生成式检索在给定查询的情况下,使用序列-序列架构,以端对端的方式生成相关文档的标识符。
先前的研究发现,使用原子标识符的生成式检索,等同于单向量密集检索。然而,以前的研究仅关注检索阶段,而未考虑生成式检索解码器内部的深层交互。
本文通过证明生成式检索和多向量密集检索,共享衡量文档与查询相关性的框架来填补这一空白。
还有一篇来自格拉斯哥大学和比萨大学的研究人员发表的A Reproducibility Study of PLAID,获得了最佳论文奖亚军。
通过研究PLAID引入的参数,作者发现了其帕累托前沿(Pareto frontier)是由三个参数之间的精心平衡形成的。
之后,研究比较了PLAID和对BM25结果进行重新排序的方法,在低延迟情况下,重新排序方法表现更好。但在高延迟情况下,重新排序方法难以达到最佳效果。
研究中,提出了一种全新的评估检索增强生成(RAG)系统的方法,名为eRAG。
一是传统的端到端评估方法计算成本高,另一个是基于查询-文档相关性标签的检索模型评估,与RAG系统的下游性能相关性较小。
eRAG方法可以将检索列表中的每个文档,都被单独输入到RAG系统的大模型中,针对每个文档生成的输出都基于下游任务的真实标签进行评估M6。
结果显示,eRAG显著改善了运行时间。相较于端到端的评估,GPU内存消耗减少了最多50倍。
本文为澎湃号作者或机构在澎湃新闻上传并发布M6,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问。米乐6米乐6